Betweenness Centrality of Some Complementary Prism Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Fully Dynamic Betweenness Centrality

We present fully dynamic algorithms for maintaining betweenness centrality (BC) of vertices in a directed graph G = (V,E) with positive edge weights. BC is a widely used parameter in the analysis of large complex networks. We achieve an amortized O(ν∗ · log n) time per update with our basic algorithm, and O(ν∗ · log n) time with a more complex algorithm, where n = |V |, and ν∗ bounds the number...

متن کامل

Efficient algorithms for updating betweenness centrality in fully dynamic graphs

Betweenness centrality of a vertex (edge) in a graph is a measure for the relative participation of the vertex (edge) in the shortest paths in the graph. Betweenness centrality is widely used in various areas such as biology, transportation, and social networks. In this paper, we study the update problem of betweenness centrality in fully dynamic graphs. The proposed update algorithm substantia...

متن کامل

Better Approximation of Betweenness Centrality

Estimating the importance or centrality of the nodes in large networks has recently attracted increased interest. Betweenness is one of the most important centrality indices, which basically counts the number of shortest paths going through a node. Betweenness has been used in diverse applications, e.g., social network analysis or route planning. Since exact computation is prohibitive for large...

متن کامل

Approximating Betweenness Centrality

Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationally-expensive to exactly determine betweenness; currently the fastest-known algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n log n) time for weighted graphs, where n is the number of vertices and m is the number of edges in the network. These are als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi

سال: 2019

ISSN: 1308-6529

DOI: 10.19113/sdufenbed.439833